Influence of external ankle support on lower extremity joint mechanics during drop landings.
نویسندگان
چکیده
OBJECTIVE To investigate the effects of external ankle support (EAS) on lower extremity joint mechanics and vertical ground-reaction forces (VGRF) during drop landings. DESIGN A 1 x 3 repeated-measures, crossover design. SETTING Biomechanics research laboratory. PATIENTS 13 male recreationally active basketball players (age 22.3 +/- 2.2 y, height 177.5 +/- 7.5 cm, mass 72.2 +/- 11.4 kg) free from lower extremity pathology for the 12 mo before the study. INTERVENTIONS Subjects performed a 1-legged drop landing from a standardized height under 3 different ankle-support conditions. MAIN OUTCOME MEASURES Hip, knee, and ankle angular displacement along with specific temporal (TGRFz1, TGRFz2; s) and spatial (GRFz1, GRFz2; body-weight units [BW]) characteristics of the VGRF vector were measured during a drop landing. RESULTS The tape condition (1.08 +/- 0.09 BW) demonstrated less GRFz1 than the control (1.28 +/- 0.16 BW) and semirigid conditions (1.28 +/- 0.21 BW; P < .0001), and GRFz2 was unaffected. For TGRFz1, no-support displayed slower time (0.017 +/- 0.004 s) than the semirigid (0.014 +/- 0.001 s) and tape conditions (0.014 +/- 0.002 s; P < .05). For TGRFz2, no-support displayed slower time (0.054 +/- 0.006 s) than the semirigid (0.050 +/- 0.006 s) and tape conditions (0.045 +/- 0.004 s; P < .05). Semirigid bracing was slower than the tape condition, as well (P < .05). Ankle-joint displacement was less in the tape (34.6 degrees +/- 7.7 degrees) and semirigid (36.8 degrees +/- 9.3 degrees) conditions than in no-support (45.7 degrees +/- 7.3 degrees; P < .05). Knee-joint displacement was larger in the no-support (45.1 degrees +/- 9.0 degrees) than in the semirigid (42.6 degrees +/- 6.8 degrees; P < .05) condition. Tape support (43.8 degrees +/- 8.7 degrees) did not differ from the semirigid condition (P > .05). Hip angular displacement was not affected by EAS (F(2,24) = 1.47, P = .25). CONCLUSIONS EAS reduces ankle- and knee-joint displacement, which appear to influence the spatial and temporal characteristics of GRFz1 during drop landings.
منابع مشابه
Does wearing a prophylactic ankle brace during drop landings affect lower extremity kinematics and ground reaction forces?
The objective of the study was to determine if prophylactic ankle bracing worn by females during landings produces abnormal lower extremity mechanics. Angular kinematic and ground reaction force (GRF) data were obtained for 16 athletically experienced females who performed brace and no-brace drop landings. The brace condition displayed reduced in/external rotation an...
متن کاملThe effects of floor incline on lower extremity biomechanics during unilateral landing from a jump in dancers.
Retrospective studies have suggested that dancers performing on inclined ("raked") stages have increased injury risk. One study suggests that biomechanical differences exist between flat and inclined surfaces during bilateral landings; however, no studies have examined whether such differences exist during unilateral landings. In addition, little is known regarding potential gender differences ...
متن کاملThe effect of lower extremity fatigue on shock attenuation during single-leg landing.
BACKGROUND The forces that are imposed on the body due to landings must be attenuated primarily in the lower extremity. Muscles assist in the absorption of these forces, and it has been shown that a fatigued muscle decreases the body's ability to attenuate shock from running. The purpose of the study was to determine the effect of lower extremity fatigue on shock attenuation and joint mechanics...
متن کاملThe effects of repetitive drop jumps on impact phase joint kinematics and kinetics.
The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the i...
متن کاملDynamic knee valgus alignment influences impact attenuation in the lower extremity during the deceleration phase of a single-leg landing
Dynamic knee valgus during landings is associated with an increased risk of non-contact anterior cruciate ligament (ACL) injury. In addition, the impact on the body during landings must be attenuated in the lower extremity joints. The purpose of this study was to investigate landing biomechanics during landing with dynamic knee valgus by measuring the vertical ground reaction force (vGRF) and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of sport rehabilitation
دوره 19 2 شماره
صفحات -
تاریخ انتشار 2010